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Space-like infinity and asymptotic photon fields in QED 

Malcolm Ludvigsen 
Department of Mathematics, University of Canterbury, Christchurch, New Zealand 

Received 12 October 1982 

Abstract. Infrared effects in QED are discussed from the point of view of space-like 
infinity. Using the properties of spin and conformally weighted functions defined on a 
null cone, an elementary proof of the infrared coherence condition is given and it is shown 
that Lorentz symmetry is spontaneously broken on all charged superselection sectors. 
The implications of these results for quantum gravity are discussed. 

1. Introduction 

Many important physical theories such as electromagnetism, nonlinear gauge theories 
and general relativity possess long-range Coulomb-like fields which dominate at 
space-like infinity (SLI). It has long been realised that it is precisely these fields that 
cause the so-called infrared effects in the quantum domain. In quantum electro- 
dynamics (QED), for example, these long-range fields necessitate the use of non-Fock 
representations of the asymptotic photon fields (Kulish and Faddeev 1970) and cause 
a spontaneous breakdown of Lorentz symmetry on all charged sectors (Frohlich et a1 
1979). Such effects do not occur in theories possessing only short-range fields whose 
asymptotic components vanish at SLI. 

In linear theory, it is always possible to choose a short-range field which completely 
agrees with any given long-range field over any given finite region of space-time. It 
is therefore impossible to distinguish between such fields by means of an experiment 
confined, necessarily, to a finite region of space-time. Arguments based on this fact 
are often evoked to show that infrared effects are, in principle, unobservable and 
therefore devoid of any physical content. To some extent this is true for theories such 
as QED containing only linear massless fields, and for such theories it is possible to 
use some regularisation scheme which does not appreciably alter the physical content 
of the theory but rids it of all infrared effects. However, for theories containing 
nonlinear massless fields, such an argument does not apply. This is particularly evident 
for a pure gravitational field described by a singularity free solution of Einstein’s 
equations, R,b = 0. According to recently proved positive mass theorems (see, for 
example, Witten (1981)), any such field which is non-trivial over a finite region 
necessarily possesses a non-zero asymptotic component at SLI; non-trivial short-range 
gravitational fields simply do not exist. Thus, at least as far as gravity is concerned, 
and possibly even for other nonlinear fields, there is a real possibility that infrared 
effects may be of physical importance and not devoid of physical content as in QED. 
Such effects therefore warrant consideration. 

@ 1983 The Institute of Physics 963 



964 M Ludvigsen 

Of course, quantised, nonlinear massless fields are notoriously difficult beasts to 
deal with, Nevertheless, the infrared properties of any theory, independent of whether 
it contains linear or nonlinear massless fields, appear to have the following general 
features in common: 

(1) they are asymptotic in nature and independent of the detailed local structure 
of the theory; 

(2) they are essentially determined by fields at SLI;  

(3) they are independent of the detailed dynamics of the theory. 
In this paper we shall concentrate on these general features in the relatively well 

understood context of QED in the hope that this may provide some insight into the 
nature of infrared effects in more complex theories such as quantum gravity, where 
these effects may be of physical importance. 

By using the properties of spin and conformally weighted functions defined on a 
null cone, we shall give an elementary but non-rigorous proof of the infrared 
coherence condition (Zwanziger 1976) and show that Lorentz symmetry is spon- 
taneously broken on all charged superselection sectors. Throughout this paper we 
shall emphasise the important role played by long-range Coulomb-like fields, a role 
which presumably carries over into more complex situations. Furthermore, even 
though we deal exclusively with Maxwell fields on flat space-time, much of our analysis 
is based on asymptotic quantities at SLI which have direct analogues in general relativity 
and gauge theories. 

In D 2 we investigate the asymptotic behaviour at SLI of Maxwell fields associated 
with classical, charged particle scattering systems. In particular, we show that the 
leading asymptotic component of such a field is completely determined by a single 
function defined on a sphere. In § 3, we extend this analysis to the quantum domain 
and show, given certain conditions on the asymptotic behaviour of the quantised 
current distribution, that this function has a well defined quantum analogue which 
acts as a superselection operator. We then use this result to show that Lorentz 
symmetry is spontaneously broken in all but the vacuum sector, and to demonstrate 
the necessity for non-Fock asymptotic photon fields. Finally, in § 4, we discuss the 
possible relevance of these results to quantum gravity. 

A similar analysis of these issues, but from the point of view of null infinity, has 
been conducted by Ashtekar (1981) and Ashtekar and Narain (1981). 

Much of our analysis is based on the well known properties of spin and conformally 
weighted functions and their associated ‘edth’ operators 8 and 3 (Newman and Penrose 
1966). Our metric has signature (+, -, -, -). When no confusion can arise, we 
shall omit tensor indices. 

2. Classical scattering systems 

A classical, electromagnetic scattering system may be defined as a collection of 
interacting charged particles each of which attains a well defined asymptotic velocity 
at time-like infinity. Thus, if xa  = x ~ ( T )  represents the world line of the ith particle, 
where J27 is proper time+, the limits 

T+m lim dxi/d.r := upu‘ (2.1) 

f For reasons connected with the standard Newman-Penrose spin coefficient notation, which-we use later 
on in the paper, we normalise all four-velocity vectors such that uac, = 2. Hence the factor J2. 
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and 
lim dxi/d.r := vi" 
.+-m 

are well defined. In terms of the total current distribution, J", generated by the 
particles, this implies that 

(2.3) 

if x is future pointing, and 

A lim -IC A3J(Ax)=xe;" [  S ( x - v j n ~ ) t ' j n  dT:=Jin(x) 
I 

if x is past pointing, Both J '"  and J""' have support in the time-like region T inside 
the null cone N based at the origin, and satisfy 

(2.5) 

for any given number a.  They are therefore essentially functions on the space of all 
time-like lines through the origin. For non-trivial scattering, J'" # J""'. From equations 
(2.3) and (2.4) it is clear that J '"  and J""' have the form 

-3 in(out!  
Jlniout! (ax)  = a J (x)  

a (2.6) in(out! = p i n i o u t ) x  
J ,  

where p'" and pout are scalar quantities describing the velocity distribution of the 'in' 
and 'out' scattered particles. 

In this section we shall investigate the asymptotic behaviour at SLI of Maxwell 
fields associated with such current distributions, that is fields which satisfy 

VbFab = J", Vb*Fab = 0, (2.7) 

where *Fab is the dual of Fab. However, for future convenience, we shall replace 
these two equations by the single complex equation 

VbWab = J "  (2.8) 

where Wub = F a b  + i*Fab. 
If W,,, is the retarded field generated by J ,  one can show that 

W:Et := lim A2Wret(Ax) (2.9) 

is well defined in the semi-space-like region S outside the null cone N, and is simply 
the retarded field generated by J'". Similarly, W Z ,  is well defined in S and is the 
retarded field generated by J""'. If the scattering is non-trivial, we have W::, # W$, 
and hence the asymptotic component, W:id := W::, - W s , ,  of the radiation field is 
non-zero. 

i A l + X  

In general, we shall refer to a field whose asymptotic component 

is well defined over the whole of S as being asymptotically flat at SLI, or AF for short. 
If Was vanishes over the whole of S we shall refer to the field as being empty at SLI. 

According to equation (2.10), Was satisfies 

Was(aX)= a-*WaS(X) (2.11) 
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for any given number a. It is therefore essentially a function on the space of all 
semi-space-like lines through the origin. 

The 'in' and 'out' Maxwell fields of a scattering system may be defined by 

w = win + w,,, (2.12) 

and 

w = w o u t  -t Wadv (2.13) 

where W is the total field. From these two relations we have, for non-trivial scattering, 

(2.14) 

Thus, if WO,,, is AF, so is Win. Furthermore, according to (2.14), Win and WO,, cannot 
both be empty at SLI. In the next section we shall show that this is related to the fact 
that the asymptotic 'in' and 'out' photon fields in QED cannot belong to a Fock 
representation. 

In order to consider the properties of the field Was in greater detail, it is first 
necessary to develop a little mathematical machinery connected with weighted func- 
tions on the null cone N. 

Given any covariantly constant, future pointing vector field v a  on N, normalised 
such that vava = 2, a null tetrad field ( n a ,  I " ,  mu, e" )  (ma  complex) can be defined 
on N by taking 1" to be the null vector which points along the null generators of N 
and which is normalised such that vala = 1, and by defining n a  and ma by 

wzt- WZ = w::t - w,"& = w,",", # 0. 

a n  = v a - l a ,  

mafia = -1, PV,m = 0. 

m am, = m "1, = mana = 0,  
(2.15) 

Under these conditions, l a  and n u  are determined uniquely and m a  is determined up 
to a phase factor: 

m a '  = eihm a, (2.16) 

where 1"VJ = 0. The vector field v" also enables us to define a unique affine parameter, 
r,  along the null generators of N according to 

l aVar  = 1 and r(0) = 0. (2.17) 

If 8 and 4 are spherical coordinates labelling the generators of N, then ( r ,  8,4) is a 
well defined radial coordinate system on N. 

In terms of this tetrad, the independent components of any Maxwell field W a b  on 
N are given by 

40 = W"blam b, 41 = Wabmatiib, 4 2  = Wabn "fi b. (2.18) 

Under the transformation (2.16) the component qj0, for example, transforms according 
to 

4; = 

and is an example of a function with spin weight (sw) unity. In general, a function 
77 which transforms according to 

(2.19) 
under (2.16), is said to have sw s. Two angular, differential operators associated with 

77 = e'"77 



Space-like infinity and asymptotic photon fields in QED 967 

spin weighted functions are given by 

8 q  = r [ m " ~ , q  -s (maf ib~ .mb)71 ,  Zq = r [ f t a V a q  - s ( f t a m b ~ , f i b ) q ] ,  (2.20) 

where q has sws.  It is easily checked that 8 7  and gq have spin weights s + l  and 
s - 1, respectively. In terms of the coordinates 8 and 4, these operators are given by 

(2.21) 

provided Re m" and Im m a  are tangential, respectively, to the curves 4 = constant 
and 8 = constant on each r = constant cross section of N (Newman and Penrose 1966). 

Since our tetrad is linked to an arbitrary time-like vector U", it is important to 
determine how it transforms under a change in U". A new tetrad field (n"',  la ' ,  ma' ,  
f i " ' )  corresponding to a new time-like vector U", where u a ' u a ,  = 2, may be obtained 
by means of the pure Lorentz boost L (i.e. a linear, isometric, generator preserving 
mapping of N onto itself) which transforms U" into U"'. Since I" and 1"' are obviously 
proportional and U "'1,. = 1, we have 

I " ' =  l " /V (2.22) 
where 

v = U " ' l "  (2.23) 

Similarly, 

- l a , ,  m a *  = m a ' -  ( m  bu b ' /  v)I", r ' =  Vr. (2.24) 

In general, we say that a quantity 7 which transforms according to 

q' = v - w q  (2.25) 

under this change of tetrad has conformal weight (cw) w .  Thus, for example, r has 
cw - 1 and I["m b1 and c # ~  each have cw 1. Another example of a conformally weighted 
function is the 'unit' spherical surface element given by 

d o o  := r - 2  dCl (2.26) 
where d o  is the surface element of the r = constant cross sections of N .  This transforms 
according to 

d a b  = doo /  V 2 ,  (2.27) 

and therefore has cw 2. A function which has both sw s and cw w will be said to 
have weight (s, w). q50, for example, has weight (1, 1). 

In general, the operators 8 and 5 do not have a well defined conformal weight. 
However, it can be shown (see, for example, Newman and Penrose (1966)) that if 
.rr(f?, 4)  has weight (-1, -1) then 

4 := fir (2.28) 
has weight (0, -2). Conversely, if 4(d,  4 )  has weight (0, -2), and can be written in 
the form (2.28), then .rr is determined uniquely and has weight (-1, -1). This result 
will prove useful later. 
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When expressed in terms of the components 4i (i = 0, 1 ,2) ,  Maxwell's equations 
on N yield the following well known radial spin-coefficient equations: 

1 -  1 -  (;+ ;)& + ; a40 = 0, (;+++;LVI = O  (2.29) 

(Newman and Penrose 1968). In particular, the components, 47, of Was on N satisfy 
equation (2.29). Furthermore, by equation (2.1 l ) ,  these components also satisfy 

d 
dr 
- (r24Y) = 0,  (2.30) 

and when this equation is substituted into (2.29) we obtain the following result: 

4:=0, 4? = 4 / r2 ,  47 = a 4 / r 2 ,  (2.31) 

where 4 (e, 4 )  is a function of weight (-2, 0). The boundary values of Was on N are 
therefore completely determined by specifying the single function 4. Moreover, since 
any Maxwell field which is free on the semi-space-like region S is completely deter- 
mined by its boundary values on N, we have the important result that Was in S is 
determined by a single function 4 (e, 4 )  of weight (0, -2). 

By Gauss's theorem together with equations (2.18), (2.26) and (2.31) we see that 
the total charge of the field is given by 

e = lim Wabm"fi dR = 4 dRo. (2.32) 
r-oc P P 

Since 4 and dRo have weights (0, -2) and (0, 2), respectively, the expression on 
the right-hand side of (2.32) has zero weight. It is thus invariant in the sense that it 
is independent of the choice of tetrad. 

If W and W* are two AF Maxwell fields which are related by the Lorentz boost 
L, i.e. L(  W) = W*, then it is an easy matter to check that their corresponding weighted 
functions 4 and 4* at SLI are related by 

d*(e, 4 )  = v - 2 m ,  4 ) .  (2.33) 

In particular, 4* # 4 provided L is non-trivial. In the next section we shall use this 
fact to show that Lorentz symmetry is spontaneously broken in all but the vacuum 
sector in QED. 

By using the Lienard-Wiechert potentials, one can show that the weighted functions 
4ret and d a d v ,  corresponding to W,,, and Wadv, are given by 

where d V is the volume element of the (future) time-like hyperboloid x "x, = 2. 
In  order to obtain a useful expression for the weighted function q5 corresponding 

to any AF free field W (e.g. Win or WO"'), it is first necessary to expand W in terms 
of plane waves: 

w,b = ~ " b ( k )  eik 'x  dN (2.35) 

where k "  is the null position vector on N and d N  is the invariant volume element of 
N. By writing k" = rl" and using the tetrad orthogonality relations, it can be seen that 

I 
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equation (2.35) may be written in the form 
CO 

w a b ( x )  = f I=-, ~ [ ~ m ~ l a  e''''xr dr doo ,  (2.36) 

where a is a function on N which, in order for this expression to be invariant, has 
weight (-1, -1). There thus exists a one-to-one correspondence between free fields 
and functions of weight (-1, -1) defined on N .  

In terms of these functions, an invariant expression for the Hermitian scalar product 
between two free Maxwell fields corresponding to a !  and a2 is given by 

(2.37) 

This product enables us to define two important classes of smooth functions of weight 

(2.38) 

Obviously CO c C1. In the next section we shall show that fields belonging to CO and 
C are related to Fock and non-Fock, infrared, photon fields, respectively. 

From equation (2.37) and the defining relations (2.38) we see that 

(-1, -1): 

CO := {a l(a, a )  < CO}, C := {a 1 \(a,  p)I < CO for all p E CO}. 

l ima := r ( 8 , 4 )  (2.39) 
r-0 

exists if a E C and vanishes if a E Co. Furthermore, by means of a non-trivial limiting 
procedure similar to that given in Ludvigsen (1982), one can show that any field 
belonging to C is AF and that its corresponding weighted function 4 at SLI is given by 

4 (e, 4 = 8T. (2.40) 

The zero frequency mode of a free field therefore determines the field's asymptotic 
component at SLI. Equation (2.40) implies that 4 has weight (0, -2), and also 
determines a one-to-one correspondence between the functions n and q!~ (cf equation 
(2.28)). 

Finally, from the above results we see that the weighted function $J at SLI corre- 
sponding to the total field of a scattering system is given by 

(2.41) d = din f dret = dout f d a d "  

where 

d i n ( o u t )  = B r i n ( o u t ) ,  (2.42) 

r i n ( o u t )  = lim a in(out) .  (2.43) 
r-0 

3. Quantised scattering systems 

In this section we shall consider asymptotic 'in' and 'out' photon fields corresponding 
to a quantised scattering system. As in 9 2, we shall avoid all questions concerning 
the detailed dynamics of such a system by imposing what appear to be reasonable 
asymptotic conditions on the quantised current distribution and by concentrating on 
the properties of the total quantised Maxwell field at SLI. By this means, we shall 
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demonstrate the necessity for non-Fock asymptotic photon fields and show that Lorentz 
symmetry is spontaneously broken in all but the vacuum sector. We shall also give 
an elementary proof of the infrared coherence condition. We start with free fields. 

To obtain a quantum description of a free Maxwell field one first replaces its 
associated weighted function a by a weighted operator distribution & which satisfies 
the canonical commutation relations (CCRs) 

[&,, 4 1  = (f,f'), [&f, 4 3  = 0, (3.1) 

where f and f' belong to CO and &, := (f, 6) .  
'I'he problem of quantisation now reduces to that of choosing a Hilbert space 

representation, {&, H ) ,  of these CCRS. We shall restrict our attention to the so-called 
infrared representations (Roepstorff 1970). These have the property that the function 
(al&lb) belongs to the class C for all normalisable states la) and lb). Therefore, for 
such a representation, lim,,o(a I& / b )  exists and determines an operator &(e, 4 )  accord- 
ing to 

& = w-lim d i ,  
r - 0  

(3.2) 

where w-lim indicates weak limit, i.e. the limit of the matrix elements of the operator 
in question. The existence of this limit together with the results of 5 2 imply that the 
quantised Maxwell field, given by 

is AF at SLI in the sense that Was exists as a weak limit. Moreover, Was is determined 
by the weighted operator 

:= 87;. (3.4) 

From equations (3.1) we have 

[&, 4 1  =f, [&, a*,] = 0. 

Therefore, since the limit (3.2) exists and lim,,,,f = 0, these two relations imply that 

16, &;I = w-lim [a, a;] = limf = 0, [&, hf] = w-lim [a, ai] = 0. 
r -0 r + 0  r-0 

The weighted operator, 6, given by equation (3.2) therefore commutes with ai/ and 
6; for all functions f belonging to CO, and thus defines superselection sectors on H. 
This is a reflection of the fact that (b  ̂ (or, equivalently, Was) is defined at SLI and is 
therefore casually unrelated to any finite region of space-time. On these superselection 
sectors, which are usually referred to as infrared sectors, 6 is a c-number function. 
It can be shown (see, for example, Roepstorff (1970)) that two sectors corresponding 
to c -number functions q5 and 4' are unitarily equivalent if and only if q5 = q5' ,  and 
unitarily equivalent to a Fock representation if and only if q5 = 0. 

A curious, but well known, feature of sectors with non-vanishing q5 is that they 
do not carry a unitary representation of the Lorentz group. To see this, we need only 
note that if W and W *  are related by a Lorentz boost L then, by equation (2.33), 
q5* # q5. @' and W *  therefore belong to inequivalent sectors. 

Let us now move on to quantised scattering systems involving charged particles. 
We shall assume that such a system has the following properties. 
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(1) The total field W and current .? are operator distributions acting on some 
Hilbert space H and satisfy Maxwell's equations 

v b w * b  = . f a .  (3.5) 

W = W i n  + e r e t  = W o u t  + Wadv (2) (3.6) 

where Win and Wout and free fields belonging to a general infrared representation. 
(3) For all time-like, past pointing position vectors 

f in (x )  := w-lim A 3 j ( A x )  
A -*cc 

is a well defined operator distribution and has the form J'h" = pinxa. 
(4) If 

(3.7) 

(3.8) 

is an in-state containing N particles of velocity vi" and charge e? (i = 1 . . , N ) ,  then 

.finla, in) =Pia, in), (3.9) 
where Jin is given by equation (2.4) 

.?Out := w-lim A 3 j ( A x )  

We also assume similar conditions for 

A+m 

where the position vector x is now time-like and future pointing. 

limit and is determined by a single operator function $(e, 4 )  given by 
Under these conditions, the asymptotic component of @ at SLI exists as a weak 

(3.10) 

By equation (2.32), the charge operator of the system is given by 

Z = f d d R o .  (3.11) 

Standard arguments (see, for example, Strocchi and Wightman (1974)), based on the 
fact that all observables are local and that is defined at SLI, show that ê  commutes 
with all observables and hence defines charge superselection sectors on which 2 is a 
c-number. Moreover, as Zwanziger (1976) has pointed out, the same arguments also 
show that d is itself a c -number function on any irreducible charged sector. Therefore, 
on any such sector of charge e, we have 

4 =dret+4in=4advfdout (3.12) 
A 1  

where 4 is a c-number function such that 

e = $ 4  dRo. (3.13) 

It would be nice if we could choose Ein such that 4 vanishes. However, as q5in is 
charge free (i.e. 4 c$jin dno = dnin  dRo = O) ,  this can be done only on the vacuum sector. 
The best we can do on any charged sector is to choose q ! ~ ~ ~  such that e = 4 .  In this 
case, equation (3.12) yields 

(3.14) 
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and, therefore, on using equations (3.9) and (2.4), we have 

(3.15) 

provided la, in) has total charge e. Equation (3.15) is equivalent to the well known 
infrared coherence condition, obtained by different means by Kulish and Faddeev 
(1970), and discussed extensively by Zwanziger (1976). It shows that, when acting 
on states of the type la, in), Win must belong to the infrared sector corresponding to 

(3.16) 

In particular, it shows that W,, cannot belong to a Fock representation since this 
would imply 

d i n l a ,  in) = 0 

for all states la, in), in contradiction to equation (3.15). Similar remarks also apply 
to the 'out' fields. 

Exactly as in the free field case, one can show that sectors on which d is non-zero, 
and hence all charged sectors, do not carry a unitary representation of the Lorentz 
group. Lorentz symmetry is thus spontaneously broken in all but the vacuum sector. 
This is reflected in the non-invariant form of the infrared coherence condition (3.15). 
On the vacuum sector it assumes the invariant and simpler form 

dinla, in) = -1 e:"/([ - t.:")* la, in). (3.17) 

4. Discussion 

From the above results, we see that if (unbroken) Lorentz symmetry is to be retained 
as a basic property of any quantum theory involving a Maxwell field-or any other 
massless, integer spin field for that matter-it is necessary to restrict attention to 
superselection sectors on which the Maxwell field is empty at SLI,  i.e. d = 0. This 
obviously rules out all charged sectors. Nevertheless, this imposes no real physical 
restraint on the theory since, from an operational point of view, the creation of a 
charge e is always accompanied by the creation of a charge -e. It is thus always 
possible to obtain a Lorentz invariant quantum description of, for example, an electron, 
so long as we include within the same description the positively charged ion which 
the electron leaves behind. In this sense, the vacuum sector in QED is, in principle, 
sufficiently rich in states to describe any realistic physical process involving charged 
particles. 

Theories involving linearised gravitational fields (i.e. spin-2, massless fields) have 
a very similar structure and, with little alteration, the methods of §§ 2 and 3 can be 
extended to such theories. In particular, one can show that the asymptotic component 
at SLI of an AF linearised gravitational field is completely determined by a single 
function CL(@, 4)  which differs from its Maxwell equivalent in having weight (0, -3) 
rather than weight (0, - 2 ) .  As in QED, this function must vanish in the quantum 
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domain if we wish to retain (unbroken) Lorentz symmetry. However, if we attempt 
to impose upon the theory the well attested fact that gravitational mass-the gravita- 
tional equivalent of electric charge-always has the same sign, we immediately run 
into difficulty: if massive particles are present, their Coulomb-like fields necessarily 
make 4 non-zero, and this in turn causes a spontaneous breakdown of Lorentz 
symmetry. The condition that gravitational mass always has the same sign is thus 
incompatible with unbroken Lorentz symmetry for linear quantum gravity. 

Does this difficulty also occur for full nonlinear quantum gravity? Of course, since 
an acceptable theory of quantum gravity has yet to be produced, we cannot give an 
unequivocal answer to this question. There are, however, strong indications that this 
difficulty does not occur in the full theory in the sense that distinct superselection 
sectors on which CL is a c-number cease to exist. 

For the sake of simplicity, let us consider solutions of Einstein’s equations which 
are matter and singularity free and which are asymptotically flat at both SLI (Ashtekar 
and Hansen 1978) and null infinity (Penrose 1968). Assuming certain regularity 
conditions at SLI, the leading asymptotic component of the Weyl tensor corresponding 
to such a solution is completely determined by a single function $ ( e , # )  of weight 
(0, -3), exactly as in the linear case. In terms of this function, the total (ADM) 
momentum of the solution is given by 

According to recently proved positive mass theorems (Witten 1981), Pa is non-zero 
and future pointing for all non-trivial solutions, and is zero if and only if the solution 
is identically flat. Consequently, the function (1, corresponding to any non-trivial 
solution cannot be identically zero. Thus, as in the case of a linearised gravitational 
field produced by massive particles, a pure nonlinear gravitational field cannot be 
empty at SLI.  

If, as seems plausible, this function has a well defined quantum analogue, CL say, 
we have the problem of interpreting 4. By analogy with linear theory, an obvious 
interpretation of 6 is that it acts as a superselection operator. If this were indeed the 
case, then the vacuum sector would contain a single state corresponding to flat 
space-time and (asymptotic) Lorentz symmetry would be spontaneously broken on 
all non-trivial sectors. We would thus encounter the same difficulty as in linear theory. 
However, as nonlinear gravity is a highly non-local theory, one cannot envoke the 
principle of locality to argue that 6 acts as a superselection operator. Indeed, for 
any acceptable theory of quantum gravity, 6 cannot act in this way as this would 
imply, by equation (4.1), that the momentum operator pa commutes with all ‘local’ 
observables. 

A more plausible interpretation of 6 comes directly from asymptotic quantisation 
schemes based on null infinity (Bramson 1976, Ashtekar 1981). Under this interpreta- 
tion, 4 acts as a generator of BMS supertranslations in the sense that 

where fi is the quantum analogue of the gravitational news function and E (e, 4 )  is 
an infinitesimal supertranslation function of weight (0 ,  1). 
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